Infinitely many solutions for quasilinear Schrödinger equations with sign-changing nonlinearity without the aid of 4-superlinear at infinity

نویسندگان

چکیده

Abstract In this article, we will prove the existence of infinitely many solutions for a class quasilinear Schrödinger equations without assuming 4-superlinear at infinity on nonlinearity. We achieve our goal by using Fountain theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

Existence of Nontrivial Solutions for Singular Quasilinear Equations with Sign Changing Nonlinearity

By an application of Bonanno’s three critical point theorem, we establish the existence of a nontrivial solution to the problem −∆pu = μ g(x)|u|p−2u |x|p + λa(x)f(u) in Ω, u = 0 on ∂Ω, under some restrictions on g, a and f for certain positive values of μ and λ.

متن کامل

Infinitely Many Large Energy Solutions of Superlinear Schrödinger-maxwell Equations

In this article we study the existence of infinitely many large energy solutions for the superlinear Schrödinger-Maxwell equations −∆u+ V (x)u+ φu = f(x, u) in R, −∆φ = u, in R, via the Fountain Theorem in critical point theory. In particular, we do not use the classical Ambrosetti-Rabinowitz condition.

متن کامل

Infinitely Many Solutions of Superlinear Elliptic Equation

and Applied Analysis 3 Lemma 6 (see [17]). Assume that |Ω| < ∞, 1 ≤ p, r ≤ ∞, f ∈ C(Ω×R), and |f(x, u)| ≤ c(1+|u|). Then for every

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2022

ISSN: ['0420-1213', '2391-4661']

DOI: https://doi.org/10.1515/dema-2022-0169